Materiales y sus Propiedades Magneticas

Introducción:

Todos sabemos que un imán puede atraer o repeler algunos objetos tales como los metales, pero ¿Porque se produce dicho fenómeno?, ¿Todos los materiales tienen la misma tendencia a ser magnetizados o producir un campo magnético?, recordemos que un campo magnético es producido por cargas en movimiento o una corriente eléctrica que actúa cercano a un material magnetizable como una bobina. A nivel atómico el giro del electrón en su eje produce un campo magnético (momento Magnético del Spin) que es el campo magnético mas fuerte a nivel molecular aportando entre el 93% al 96% del campo magnético resultante (la suma de todos estos campos atómicos resultaran ser el campo magnético total del material) también el giro del electrón en su orbita produce un campo (momento magnético del orbital) pero otorga un campo mucho menor en comparación al momento magnético del spin. El campo Magnético produce una fuerza sobre otras cargas o corrientes en movimiento la naturaleza de esta fuerza puede ser de atracción o repulsión es por eso que los materiales reaccionas al ser expuestos a un campo magnético externo.Cabe señalar que en adelante representaremos al Campo Magnético con la letra B, recuerden que el campo magnético es un vector que tiene magnitud, dirección y sentido.

Propiedades Magnéticas:

Cada material reacciona distinto a un B externo, es por eso que se dividen en tres tipos: Materiales Diamagnéticos, Paramagnéticos y Ferromagnéticos.

Materiales Diamagnéticos: Esta propiedad existe entre átomos que poseen una estructura electrónica simétrica y no poseen momentos magnéticos permanentes (los momentos magnéticos producidos por un átomo anulan los momentos magnéticos producidos por otro átomo en un mismo material), forman enlaces iónicos o moléculas que comparten un par de electrones (enlace covalente). Al aplicar un momento magnético externo estos materiales se magnetizan muy levemente y en sentido contrario al momento magnético externo. Un imán repele levemente estos materiales y no recuperan sus características al quitar el B externo.

Ejemplos de materiales diamagnéticos: Grafito – Cobre (Cu) – Plata (Ag) – Oro (Au) – Plomo (Pb) – Bismuto (Bi) – Cinc (Zn) – Cadmio (Cd) – Mercurio (Hg) – Antimonio (Sb) – Estaño (Sn) – Geranio (Ge) – Arsénico (As).

Materiales Paramagnéticos: Esta propiedad existe en átomos que poseen una estructura electrónica no equilibrada (valencia o capas internas incompletas) y por lo tanto poseen un momento magnético propio, aunque débil. Al aplicar un B externo el B propio (que produce el mismo material) tienden a tomar la misma dirección y sentido del B externo; magnetización débil. Un imán atrae levemente a estos materiales.

Ejemplos de materiales paramagnéticos: Litio (Li) – Aluminio (Al)- Magnesio (Mg) –Cromo (Cr) – Vanadio (V) - Titanio (Ti) – Molibdeno (Mo) - Renio (Re) – Wolframio (W)

Materiales Ferromagnéticos: Estos elementos poseen capas “d” incompletas y además tienen alineados su Spin con los átomos adyacentes, sin un B externo aplicado; esto ocurre en un volumen de cierta magnitud que se llama “Dominio”. De todos los elementos solamente son ferromagnéticos el Hierro (Fe), Cobalto (Co), Níquel (Ni) y Gadolinio (Gd).Se ha comprobado que el 93% al 100% del ferromagnetismo proviene del momento magnético spin, y el resto (si hay) del momento magnético del orbital.

Estos materiales presentan un momento magnético propio relativamente fuerte en ausencia de un B externo (como el que produce una bobina). B externos pequeños producen una alta magnetización del material y se obtiene rápidamente una orientación total del B propio en la dirección y sentido del B externo.

Tipos de Materiales Ferromagnéticos:

Los materiales ferromagnéticos se dividen en dos tipos: los magnéticamente blandos y los imanes permanentes (magnéticamente duros):

a) Sólidos que muestran una baja histéresis y poca fuerza coercitiva (<10 Oe) que se denominan materiales magnéticamente blandosb) Sólidos que muestras una alta histéresis y mucha fuerza coercitiva (50 a 1000 Oe) que se denominan materiales magnéticamente duros.

Curva de histéresis:La curva de histéresis muestra la curva de magnetización de un material. Sea cual sea el material específico, la forma tiene características similares.• Al principio, la magnetización requiere un mayor esfuerzo eléctrico. Este intervalo es la llamada zona reversible.• En un determinado punto, la magnetización se produce de forma proporcional. En ese punto se inicia la denominada zona lineal.• Finalmente, se llega un instante a partir del cual, por mucha fuerza magnética que induzcamos al material, ya no se magnetiza más. Este es el llamado punto de saturación, que determina el inicio de la llamada zona de saturación.Para la grabación magnética analógica de sonido hay que tener en cuenta la curva de histéresis. La señal de audio hay que grabarla solo en la zona lineal de la cinta magnética de audio, de modo contrario, por arriba o por abajo, sufriría deformaciones.

Aplicaciones generales de los materiales magneticos:

Algunas de las aplicaciones más importantes de los electroimanes superconductores, sin que la lista pretenda ser exhaustiva, es la siguiente:

1) Aplicaciones biológicas. Se sabe desde hace mucho tiempo que los campos magnéticos intensos afectan el crecimiento de plantas y animales. Así, se han utilizado electroimanes superconductores para generar campos magnéticos intensos y estudiar sus efectos en el crecimiento de plantas y animales y, además, analizar su efecto en el comportamiento de estos últimos.

2) Aplicaciones químicas. Es un hecho conocido que los campos magnéticos pueden cambiar las reacciones químicas y ser utilizados en la catálisis.

3) Aplicaciones médicas. Se han aplicado campos magnéticos para arreglar arterias, sacar tumores y para sanar aneurismas sin cirugía. También se estudia la influencia de los campos magnéticos en las funciones vitales del cuerpo humano.

4) Levitación. Una aplicación muy importante es en el transporte masivo, rápido y económico. La idea de usar una fuerza magnética para hacer "flotar" vehículos de transporte ha estado en la mente de los científicos por casi un siglo y la posible aplicación de la superconductividad a este problema lo ha renovado y actualizado. Hay, esencialmente, dos métodos posibles para conseguir la levitación. Uno corresponde a la utilización de un sistema atractivo y el otro a un sistema repulsivo. El Ejemplo mas representativo son los trenes magnetic levitation (maglev), la velocidad maxima es de 581 Km/hr, porque nos hay fuerzas de roces.

5) Generación de energía. Utilización de imanes superconductores para lograr "botellas magnéticas" que sirvan para la generación de energía nuclear por fusión que no presenta problemas de desechos radiactivos, como sucede con los actuales generadores de energía nuclear por fusión.

6) Blindaje y modelaje de campos magnéticos. Puede lograrse por medio de planos superconductores que ya han sido utilizados para este fin en sistemas de producción de energía.

7) Aceleradores de mucha energía. Se han podido desarrollar electroimanes dipolares y cuadrupolares oscilantes de materiales superconductores, capaces de generar los campos magnéticos más intensos de la historia para su utilización en aceleradores de partículas de energía muy grandes.

0 comentarios: